Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Commun Med (Lond) ; 2(1): 147, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2133666

ABSTRACT

BACKGROUND: Currently, alternative medical imaging methods for the assessment of pulmonary involvement in patients infected with COVID-19 are sought that combine a higher sensitivity than conventional (attenuation-based) chest radiography with a lower radiation dose than CT imaging. METHODS: Sixty patients with COVID-19-associated lung changes in a CT scan and 40 subjects without pathologic lung changes visible in the CT scan were included (in total, 100, 59 male, mean age 58 ± 14 years). All patients gave written informed consent. We employed a clinical setup for grating-based dark-field chest radiography, obtaining both a dark-field and a conventional attenuation image in one image acquisition. Attenuation images alone, dark-field images alone, and both displayed simultaneously were assessed for the presence of COVID-19-associated lung changes on a scale from 1 to 6 (1 = surely not, 6 = surely) by four blinded radiologists. Statistical analysis was performed by evaluation of the area under the receiver-operator-characteristics curves (AUC) using Obuchowski's method with a 0.05 level of significance. RESULTS: We show that dark-field imaging has a higher sensitivity for COVID-19-pneumonia than attenuation-based imaging and that the combination of both is superior to one imaging modality alone. Furthermore, a quantitative image analysis shows a significant reduction of dark-field signals for COVID-19-patients. CONCLUSIONS: Dark-field imaging complements and improves conventional radiography for the visualisation and detection of COVID-19-pneumonia.


Computed tomography (CT) imaging uses X-rays to obtain images of the inside of the body. It is used to look at lung damage in patients with COVID-19. However, CT imaging exposes the patient to a considerable amount of radiation. As radiation exposure can lead to the development of cancer, exposure should be minimised. Conventional plain X-ray imaging uses lower amounts of radiation but lacks sensitivity. We used dark-field chest X-ray imaging, which also uses low amounts of radiation, to assess the lungs of patients with COVID-19. Radiologists identified pneumonia in patients more easily from dark-field images than from usual plain X-ray images. We anticipate dark-field X-ray imaging will be useful to follow-up patients suspected of having lung damage.

2.
PLoS One ; 15(12): e0244707, 2020.
Article in English | MEDLINE | ID: covidwho-999850

ABSTRACT

BACKGROUND: Since the outbreak of the COVID-19 pandemic, a number of risk factors for a poor outcome have been identified. Thereby, cardiovascular comorbidity has a major impact on mortality. We investigated whether coronary calcification as a marker for coronary artery disease (CAD) is appropriate for risk prediction in COVID-19. METHODS: Hospitalized patients with COVID-19 (n = 109) were analyzed regarding clinical outcome after native computed tomography (CT) imaging for COVID-19 screening. CAC (coronary calcium score) and clinical outcome (need for intensive care treatment or death) data were calculated following a standardized protocol. We defined three endpoints: critical COVID-19 and transfer to ICU, fatal COVID-19 and death, composite endpoint critical and fatal COVID-19, a composite of ICU treatment and death. We evaluated the association of clinical outcome with the CAC. Patients were dichotomized by the median of CAC. Hazard ratios and odds ratios were calculated for the events death or ICU or a composite of death and ICU. RESULTS: We observed significantly more events for patients with CAC above the group's median of 31 for critical outcome (HR: 1.97[1.09,3.57], p = 0.026), for fatal outcome (HR: 4.95[1.07,22.9], p = 0.041) and the composite endpoint (HR: 2.31[1.28,4.17], p = 0.0056. Also, odds ratio was significantly increased for critical outcome (OR: 3.01 [1.37, 6.61], p = 0.01) and for fatal outcome (OR: 5.3 [1.09, 25.8], p = 0.02). CONCLUSION: The results indicate a significant association between CAC and clinical outcome in COVID-19. Our data therefore suggest that CAC might be useful in risk prediction in patients with COVID-19.


Subject(s)
COVID-19/pathology , Coronary Artery Disease/diagnostic imaging , Vascular Calcification/diagnostic imaging , Vascular Calcification/diagnosis , Aged , COVID-19/diagnostic imaging , COVID-19/therapy , Coronary Angiography/methods , Coronary Artery Disease/pathology , Female , Germany , Humans , Male , Middle Aged , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Treatment Outcome , Vascular Calcification/pathology
SELECTION OF CITATIONS
SEARCH DETAIL